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You can obtain up to 10 points per exercise (plus bonus points, where applicable).

Definition. A topological space X is called totally disconnected if it does not contain a connected subspace
with more than one point. (For example, every discrete space is totally disconnected, as is Q with the
subspace topology.)

Exercise 1. Let X be a totally disconnected space with underlying set X0, and let A be an abelian group.
Construct an explicit isomorphism H0(X,A) ∼=

⊕
X0

A and determine Hn(X,A) for all n > 0.

Definition. A double complex C•,• is a commutative diagram

...
...

...

· · · C2,2 C2,1 C2,0 0

· · · C1,2 C1,1 C1,0 0

· · · C0,2 C0,1 C0,0 0

0 0 0

of abelian groups such that all rows and columns are chain complexes. We write dhp,q for the ‘horizontal’
differential Cp,q → Cp,q−1 and dvp,q for the ‘vertical’ differential Cp,q → Cp−1,q.

Exercise 2. 1. Let C•,• be a double complex. Show that Tot(C•,•)n :=
⊕

p+q=n
Cp,q becomes a chain

complex via the differential given in degree n by

Cp,q ∋ x 7→ (−1)pdhp,q(x) + dvp,q(x)

(with the convention that dhp,0 and dv0,q are zero). The chain complex Tot(C•,•) is called the total
complex of the double complex C•,•.

2. Show: if the chain complexes C•,q are exact for all q > 0, then the inclusions Cp,0 ↪→ Tot(C•,•)p induce
isomorphisms Hn(C•,0) ∼= Hn

(
Tot(C•,•)

)
.

3. Use this to show that if the chain complexes C•,q and Cp,• are exact for all p, q > 0, then the complexes
C•,0 and C0,• have isomorphic homology.
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Definition. Let C,D be chain complexes. We define the external tensor product C ⊠ D as the double
complex with (C ⊠D)p,q = Cp⊗Dq and differentials Cp⊗ d and d⊗Dq (you can convince yourself that this
is indeed a double complex). The tensor product of C and D is then defined as the total complex Tot(C⊠D)
in the sense of the previous exercise.

Exercise 3. 1. The interval is the chain complex I given by

· · · −→ 0 −→ 0 −→ Z

(
1

−1

)
−−−−−→ Z2 −→ 0.

Let e0, e1 denote the standard basis vectors of Z2 = I0. Show that the maps Cn → (C⊗I)n, c 7→ c⊗ek
define a chain map ιk : C → C ⊗ I for k = 0, 1.

2. Let f, g : C ⇒ D be chain maps. Construct a bijection

{chain homotopies from f to g} ∼= {chain maps H : C ⊗ I → D with Hι0 = f,Hι1 = g}.

Hint. First construct a chain homotopy from ι0 to ι1.

Exercise 4. Recall from the previous sheet the definition of the nerve N(C) of a small category C.

1. Let F,G : C ⇒ D be two functors and let τ : F ⇒ G be a natural transformation. Construct a simplicial
homotopy from N(F ) to N(G).

2. Conclude that if C has a terminal object (i.e. an object 1 such that |Hom(X, 1)| = 1 for all X ∈ C),
then the identity of N(C) is simplicially homotopic to a constant map.

Definition. A chain map f : C → D is called a quasi-isomorphism if the induced map Hn(f) : Hn(C) →
Hn(D) is an isomorphism for every n ≥ 0. We say that C and D are quasi-isomorphic if they can be
connected by a zig-zag of quasi-isomorphisms, i.e. there exists a diagram

C = C0 → C1 ← C2 → · · ·Cn−1 ← Cn = D

for some n such that all maps are quasi-isomorphisms.

∗Exercise 5 (4 + 6 bonus points). 1. Let C be a chain complex. Show that there exists a quasi-isomorphism
C ′ → C such that each C ′

n is free abelian.

2. Let C be a chain complex. Show that C is quasi-isomorphic to the chain complex

· · · 0−→ Hn(C)
0−→ Hn−1(C)

0−→ · · · 0−→ H1(C)
0−→ H0(C) −→ 0.

Hint. As an intermediate step, show that C is quasi-isomorphic to a direct sum of complexes each of
which vanishes outside of two adjacent degrees.

Remark. As a consequence, we can check whether two chain complexes are quasi-isomorphic by computing
their homology. Note/recall that on the other hand we cannot check whether two CW-complexes are weakly
equivalent by simply looking at their disembodied homotopy groups, so this is something really special about
chain complexes (of abelian groups).

2


