Exercises for **Topology I** Sheet 5

You can obtain up to 10 points per exercise (plus bonus points, where applicable).

Exercise 1. Let $X = \mathbb{N}$ with the discrete topology and let $Y = \{n^{-1} : n \in \mathbb{N}_{>0}\} \cup \{0\}$ with the subspace topology of \mathbb{R} . We have a continuous map $f : X \to Y$ sending 0 to 0 and n > 0 to n^{-1} . Show:

- 1. The map f induces a bijection on π_0 and isomorphisms $\pi_k(X, x) \cong \pi_k(Y, f(x))$ for all $x \in X$ and $k \ge 1$.
- 2. Nevertheless, f is not a homotopy equivalence.

Exercise 2. Prove the following converse of Whitehead's Theorem: any homotopy equivalence $f: X \to Y$ of arbitrary topological spaces induces a bijection $\pi_0(X) \cong \pi_0(Y)$ and isomorphisms $\pi_k(X, x) \cong \pi_k(Y, f(x))$ for all $x \in X, k \ge 1$.

Warning. Note that f is not necessarily a *based* homotopy equivalence $(X, x) \to (Y, f(x))$, i.e. a chosen homotopy inverse might not induce a map $\pi_k(Y, f(x)) \to \pi_k(X, x)$.

* Exercise 3 (10 bonus points). Let X, Y be CW-complexes, $x \in X_0, y \in Y_0$, and let $f: X \to Y$ be a homotopy equivalence such that f(x) = y. Show that f defines a based homotopy equivalence $(X, x) \to (Y, y)$, i.e. there exists a based map $g: (Y, y) \to (X, x)$ together with base point preserving homotopies $gf \sim id_X, fg \sim id_Y$. Can one drop the assumption that x, y be 0-cells?

Exercise 4. Let X be any CW-complex, let Y be an n-dimensional CW-complex, $n \ge 0$, and let $f: X \to Y$ be a continuous map inducing a bijection on π_0 as well as isomorphisms $\pi_k(X, x) \cong \pi_k(Y, f(x))$ for all $x \in X$ and $1 \le k \le n$.

1. Show that f admits a section up to homotopy, i.e. there exists a continuous map $g: Y \to X$ together with a homotopy $fg \sim id_Y$.

Hint. First reduce to cellular f and then note that in this case the inclusion $Y \hookrightarrow M(f)$ into the mapping cylinder factors through the *n*-skeleton $M(f)_n$.

2. Show that if X is of dimension $\leq n$, then f is already a homotopy equivalence.

Definition. Let $f: X \to Y$ be a continuous map of spaces. We define the (unreduced) mapping cone C(f) as the quotient M(f)/i(X) of the mapping cylinder by the image of the inclusion $i: X \to M(f)$. The (unreduced) cone of a space X is defined as $CX \coloneqq C(\operatorname{id}_X)$.

Exercise 5. 1. Let X be any topological space. Show that the cone C(X) is contractible.

- 2. Let $f: X \to Y$ be a cellular map of CW-complexes. Equip C(f) with the structure of a CW-complex such that Y is a subcomplex.
- 3. Show: if X is a CW-complex and $f: Y \hookrightarrow X$ is the inclusion of a subcomplex, then the collapse map $C(f) \twoheadrightarrow X/Y$, sending [x] to [x] for $x \in X$ and [y, t] to the class [y] for $y \in Y, t \in [0, 1]$ is welldefined and a homotopy equivalence.
- 4. Conclude: for any CW-complex X with a subcomplex Y, any basepoint $y \in Y_0$, and any based space Z we have an exact sequence of pointed sets

$$[X/Y,Z]_* \xrightarrow{-\circ p} [X,Z]_* \xrightarrow{-\circ i} [Y,Z]_*$$

induced by the projection $p: X \twoheadrightarrow X/Y$ and the inclusion $i: Y \hookrightarrow X$.