Exercises for **Topology I** Sheet 1

You can obtain up to 10 points per exercise (plus bonus points, where applicable).

Exercise 1. Let X be a topological space, J a set, and let $(f_j: \partial D^n \to X)_{j \in J}$ be a family of continuous maps. From this data, we can define the cell attachment

$$X' \coloneqq X \amalg_{f, J \times \partial \Delta^n} (J \times D^n)$$

with quotient map

$$p: X \amalg (J \times D^n) \to X'.$$

Assume we are given an open subset $V_j \subset \{j\} \times D^n$ containing the boundary $\{j\} \times \partial D^n$ for every $j \in J$. Show that $p(X \cup \bigcup_{i \in J} V_j)$ is an open subset of X'.

Remark. Recall that quotient maps of topological spaces are in general not open.

Exercise 2. Let $n \in \mathbb{N}$ and recall that the *n*-dimensional real projective space \mathbb{RP}^n is defined as the quotient of $\mathbb{R}^{1+n} \setminus \{0\}$ by the equivalence relation generated by $x \sim \lambda x$ for all $\lambda \in \mathbb{R} \setminus \{0\}$. We saw in the previous lecture course that \mathbb{RP}^n can be equivalently described as the quotient of S^n by the equivalence relation generated by $x \sim -x$. Let $p: S^n \to \mathbb{RP}^n$ denote the quotient map.

- 1. Show that the cell attachment $D^{n+1} \coprod_{p,S^n} \mathbb{RP}^n$ is homeomorphic to \mathbb{RP}^{n+1} .
- 2. Conclude that for every $m \ge 0$ the filtration

$$\emptyset = \mathbb{R}P^{-1} \subset \mathbb{R}P^0 \subset \mathbb{R}P^1 \subset \cdots \subset \mathbb{R}P^m$$

defines an (absolute) CW-complex structure on $\mathbb{R}P^m$. Here we view $\mathbb{R}P^n$ as a subspace of $\mathbb{R}P^{n+1}$ via the map $[x_0:\ldots:x_n] \mapsto [x_0:\ldots:x_n:0]$.

Exercise 3. Let $n \in \mathbb{N}$ and recall that the *n*-dimensional complex projective space \mathbb{CP}^n is defined as the quotient of $\mathbb{C}^{1+n} \setminus \{0\}$ by the equivalence relation generated by $x \sim \lambda x$ for all $\lambda \in \mathbb{C} \setminus \{0\}$. Give \mathbb{CP}^n the structure of an absolute CW-complex with one cell in every even dimension $\leq 2n$, and no other cells.

Exercise 4. Consider the subspace

$$X = \left\{\frac{1}{n} : n \ge 1\right\} \cup \{0\} \subset \mathbb{R}.$$

- 1. Show that the quotient Y obtained from $X \times [0, 1]$ by collapsing $(\{0\} \times [0, 1]) \cup (X \times \{0, 1\})$ to a single point is homeomorphic to the Hawaiian earrings (as defined in the lecture).
- *2. (10 bonus points) Show that the suspension ΣX of X (i.e. the space obtained from $X \times [0,1]$ by identifying $X \times \{0\}$ to one point, and $X \times \{1\}$ to another one) is not homotopy equivalent to Y.

Remark. The space Y in part 1 is called the *reduced suspension* $\tilde{\Sigma}X$ of X. One can show that the natural collapse map from the ordinary suspension to the reduced one is a homotopy equivalence for every CW-complex (with an arbitrary chosen basepoint); the bonus exercise in particular shows that this is no longer true for general based topological spaces.