Algebra II

5. Übungsblatt

Aufgabe 1: (Minkowskischer Linearformensatz)

Seien

$$\lambda_i(x_1, \dots, x_n) = \sum_{j=1}^n a_{ij} x_j, \quad i = 1, \dots, n,$$

reelle Linearformen mit $\det(a_{ij}) \neq 0$ und c_1, \ldots, c_n positive reelle Zahlen mit $c_1 \cdot \ldots \cdot c_n > |\det(a_{ij})|$. Zeige, dass es ganze Zahlen $m_1, \ldots, m_n \in \mathbb{Z}$, nicht alle = 0, gibt mit

$$|\lambda_i(m_1,\ldots,m_n)| < c_i, \quad i = 1,\ldots,n.$$

Aufgabe 2:

Sei $K = \mathbb{Q}(\alpha)$, wobei $\alpha^2 = 79$. Sei R der Ring der ganzen Zahlen von K. Zeige, dass $\mathfrak{p}_1 = (3, \alpha - 1)$ und $\mathfrak{p}_2 = (3, \alpha + 1)$ Primideale sind, und dass $(3) = \mathfrak{p}_1\mathfrak{p}_2$. Zeige ferner, dass $\mathfrak{p}_1^3 = (17 - 2\alpha)$.

Aufgabe 3:

Bestimme den Ring R der ganzen Zahlen von $\mathbb{Q}(\alpha)$, wobei $\alpha^3 + \alpha + 1 = 0$. Berechne die Diskriminante von R über \mathbb{Z} und die Klassenzahl $h_{\mathbb{Q}(\alpha)}$.

Aufgabe 4:

Sei L ein algebraischer Zahlkörper und $2r_2$ die Anzahl der komplexen Einbettungen. Ferner sei x_1, \ldots, x_n eine \mathbb{Q} -Basis von L. Dann gilt

$$\operatorname{sgn}(\Delta(x_1,\ldots,x_n)) = (-1)^{r_2}.$$

Abgabe: Donnerstag, 21. November 2013.