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Abstract. We give a proof of

Theorem 1. Let k be the smallest cardinal such that the free subset property
Fr (k,w,) holds. Assume i is singular. Then there is an inner model with w,
measurable cardinals.

1. Introduction

The well-known notions of Ramsey and Erdés cardinals can be weakened in
various ways, to yield e.g., Rowbottom and Jonsson cardinals, or cardinals having
a free subset property. Usually our interest is in the smallest cardinal having such a
property. Now whereas the original large cardinal notion implied that this smallest
cardinal was at least strongly inaccessible, the weak versions do not rule out that
their smallest instances are easily accessible. Often cardinals of the order of
measurability suffice to force such properties for accessible cardinals, and some
equiconsistencies have been proved. In this paper we show that the following
theories are equiconsistent: “ZFC + the smallest « such that Fr,(x, ) is singular”
and “ZFC + there are w, measurable cardinals”.

Let us define the free subset property Fr (i, A). By a structure we understand a
first order structure S which usually includes the e-relation. The cardinality of S is
the cardinality of the underlying set |S|, the length of S is the number of constants,
functions, and relations of S. For X CS, S[X] is the substructure of S generated
from X by the constants and functions of S. X CS is free in S, if for every xe X,
x ¢ S[X\{x}]. For cardinals k, 4, u, Fr(x, 1) denotes the property: every structure
of cardinality =« and length <y has a free subset of cardinality =A. Basic
information on Fr(x, 4) is contained in Devlin [1] and Koepke [4]. In [4] we
showed that if x is minimal with Fr,(x,®;) then k= w,,, and cof(k)=w, or
cof(x)=x. Shelah [7] showed that one can force Fr (v, ,w,) starting from w,
measurable cardinals. Conversely we proved in [6] that Fr(w,,,, ®,) implies the
existence of «», measurable cardinals in an inner model. Here we strengthen this
result to:
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Theorem 1. Let x be the smallest cardinal such that Fr,(x,w,) holds. Let x be
singular. Then there is an inner model with ©, measurable cardinals.

An inspection of the proof will yield the generalized

Theorem 2. Let A be an uncountable regular cardinal. Let x be the least cardinal such
that Fr,(x, A). Let k be singular. Then there is an inner model with A measurable
cardinals.

The proof of Theorem 1 is quite involved. We will first prove the existence of an
inner model with one measurable cardinal from the assumptions, using the Dodd-
Jensen core model K (see [3]). We will then indicate how we get the full result (w,
measurables) using the short core models of [6].

For the reader’s convenience let us give a sketch of the proof: We assume that
there is no inner model with a measurable cardinal and work for a contradiction.
Let Z be an uncountable free subset for the structure K, .. We consider transitive
collapses K* of the substructures of K, . generated by uncountable subsets Y of Z.
By a suitable choice of Z we can ensure that all these K* are equal to one single
structure K. ,

The collapses embed canonically, and this allows to define measures on them.
We show that for suitable ¥, K¥ =K is iterable by such a measure, and that the
countable iterates are equal to K. If & is the w,-st iteration point of this iteration
where & is the largest cardinal in K we get a contradiction: K must be regular in K
because it is an iteration point, but it is singular in K using the Covering Theorem
of Dodd and Jensen.

So the w,-st iteration point is always smaller than &, call it A . The
wy-sequence of iteration points allows to define a mouse MY at A}, which lies
outside of K. We can define M for various Y’s, so that the A} are cofinal in ¥ and
the KY are all equal to some K. The MY descend in the <-wellordering of mice,
when their critical points increase towards £. So eventually these mice are all
mouse-iterates of a single mouse M. The iteration points of M are cofinal in %,
hence  is an iteration point of M. M must lie outside K, so « is regular in K. But
this is a contradiction as above.

We should remark that the proof of iterability for sufficiently many K*
combines ideas of Devlin and Paris [ 2] and of the proof of Kunen’s result that a
non-trivial elementary embedding n:L->,L yields O¥, as presented in [3,
Sect. 12].

2. Getting One Measurable Cardinal

Assume that x is minimal such that Fr (k,®,), and assume that cof(x)=cw, (By
Koepke [4], we have either cof(x) =k or cof(x) = w,). We will show in this chapter
that there is an inner model with one measurable cardinal.

We proceed by contradiction and assume that there is no inner model with a
measurable cardinal. Then by the Covering Theorem for K [3, 19.26],

(1) k*t=(k*)X, and K, . [« is singular, where K, . is (H,+)¥.
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Let é=coff(x). From now on we denote by K,. the structure
{Ky+,{ajaZL8),...>, where the a are constants, and ... stands for a countable set of
Skolem functions for the structure K, . without the added constants.

By Sect. 1 of Koepke [4] there exists a good free subset Z of K+, ie.,

2 Z is a cofinal subset of k, opt(Z)=w,, and
VzeZ z¢K,.[zu(Z\{z})].

So the elements of Z are also free relative to smaller ordinals. Note that every
uncountable subset of Z also satisfies (2).

For uncountable YC Z define: K¥ :=K,.[Y], ¥ : K¥ =~ K¥, where KY is transi-
tive. For uncountable X C YC Z define 6*¥: =067 o (%)~ 1: K¥> KY; the subscript
“¢” signifies that the embedding is elementary; we also write A< B if A4 is an
elementary substructure of B. Every KY is a model of ZFC~ + V=K. The notion of
“mouse” is absolute between K* and V, because w, £ K¥. A proof of the following
proposition is contained in the proof of [3,14.19]:

(3) Let S, T be transitive models of ZFC™ + V=K. Let 6:S—, T,
and w,CS. Then SCT.

We say that an uncountable YC Z is cute it for all uncountable X CY: KX =KY.
4) There exists a cute YCZ.

Proof. Assume not. There exists an w-sequence Z2Y,27Y;2..., such that Y, is
uncountable and such that K¥=+KY=+: for m<w. ¢'"m:K¥"— K"~ for
m<n<o. So the ordinal height Onn K"~ decreases monotonely with n growing.
We can hence assume that Onn K== 0nnK¥" for all m, n < @. (3) implies that K¥~
is a proper subset of K¥= for m <n< w. For m <o pick a mouse M, € K¥™\K¥m+1,
M., . <M,, in the canonical order of mice defined in [3,15.7]; it is easy to see that
this order can be extended to the class of all mice. But < is a well-ordering
[3,15.10], contradiction. QED (4)

By (4), we can assume that Z is cute. Set K:= K? and i:= 6%x). For every
uncountable YCZ, (¢¥)"':K—,K,+ and ¢¥(x)=«. For uncountable XCYCZ,
*¥":K-,K;

The following construction of an iteration of K is dependent on Z. Set o : = ¢Z. Let
Z:=0¢"Z and 1y:=min(Z). Let S:= K[A,U(Z\{%})], 0:S=S< K, § transitive.

(5) S=K, and ¢: K—,K has critical point A,.
Proof. 14<S. Ay ¢S, since by (2):

o (o) ¢ K+ [07  (2o)U(Z\{a " ' (Ax)})]-
So A, is the critical point of ¢. We can define g: K—,Sby g:=¢~
Xo=2Z\{6"(Ag)}. Then K—5,5-5.&, and by (3), S=K. QED (5)
Define Ug:= {x e P(,)n K|, € 0(x)}.

(6) {K;:,Uy) is amenable, and {K,;,Us>EU, is a normal
measure on Ag, where K, 1= (H ,)~.

1o g%oZ where
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Proof. Standard, see [3, 12.14]. QED (6).

In the following we will define an iteration <K, U,; < sz, of (K, U, ) with iteration
maps {7;;);<;<pz and critical points {4;); 4z Simultaneously, we will define
sequences (X [i< B(Z)), {Q,li £ B(Z)>, where each X ;is a subset of Z, and each Q; is
a set of subsets of Z. f(Z) is an ordinal <w, and will be determined in the
construction; if f(Z)=w, then (K, U, is iterable, and if f(Z) < w,, then the X, Q;
will be used to analyse the non-iterability of (K, U,>. We will ensure that the
following property holds

7 For < f(Z),andfori<j<p: X;CZ, card(X;)=w,, X;2 X ; and
for ve X;: my;0 a(v)=a(v).

We construct the iteration and the X, Q; by recursion. Let f < w,, and assume that
K, Up, m, Ay X, Q; are defined for i<j<p, obeying (7). We continue the
construction at § according to various cases:
B=0:<{K,U,», i, are already fixed. Set X, := Z\{min(Z)}, and Q,: = {{min(Z)}}.
B=1:Letmy,: K—>U0K be the ultrapower of K by U, where K is transitive if it is
well-founded.

Define an embedding 7#: K — K by 7y,(f) (o) — o(f) (Ao), for f:2,—K, feK.
Lo§ Theorem shows that # is well-defined and elementary. Hence K is transitive.

Note that o =7 o g, : K —s, K, K, and by (3), R=K. Let A, :=14,(4,), and
Uy = {mos(xn Uo)lxegig} .

Then n,,:{K,Uy>—><K,U,> is the one-step iteration of <K,U,». Set

X, :={veXo*Ho(v))=0(v)}.

(8) If ve X4, then 7wy, (c(v))=a(v).

Proof. We had g=7omn,. In the proof of (5), we defined g: K—,K such that

gog=0%% ¥ Z=fomy 09, and so if o*Zo(v))=a(v), then wy,(c(v))

=a(v). QED (8)

If card(X,)=w,, set Q,:={X,\X,;} and continue. If card(X,)<w,, set
Q,:={X,\X,, X}, and finish the construction by setting f(Z): =1. We note that

) If Ye Q, has cardinality w,, then Y= X\ X, and forveY:
aZ(v) > ¥ (v).

Proof. 6%(v)=0%%(c*(v)), by definition of o%°Z. o%(v)<aX°?(6?(v)), since v¢ X .
Hence o4(v)>*°(v) = 6"(v), since YCX,. QED (9)
B=p+1, B'=1: Let nz5: K>y, K be the ultrapower of K by U, where K is
transitive if it is well founded Every element of K is, in K, of the form
Tog(f) Rigay - o> Aigay A7) Where 12571 K, feK, il)<...<i(n)<pf.

We want to establish a relation between such representations of elements of K,

and elements of K: Since 7o, : K =y, K, every element of K is of the form m,,(g) (4o),
where g: 1,—K, ge K. nyp : K— K is an iterated ultrapower, so every element of K

is of the form
”op'(nm(g) (40) (ii( 1)+ i(n)) s

where g:1,—K, geK, Vv<l, g(v):vV"—>K, and i(1)<...<i(n)<p.
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Now this can be rewritten as: o © 73 (f) (Ai1y - -+ Aigys Ag))s if We define
f:A27 15K by:
f(xls “oes Xy Xy 4 1):=g(xn+1)(x1a ---’xn)>

if XgyeiX,<Xyiq, and f(xq,...,X, X,41):=0 else. These representations are
homolog:

(10) Let ¢ be a X, -formula, with one free variable for notational
simplicity. Let f:23"'>K, feK, i(1)<...<i(n)< B’ Then:

K = (P(Tfoli(f) (/lim, cees ;{'i(n)’ /1/3'))
iff
K E (P(”o;xfO To1(f) (iim, cey /L'(n)a /1,3')) .

Proof. We introduce a quantifier Q with the intension “there are measure one
many”:
K, UpkEQxy il {x<AKK,UpEy(x)}eU;.

Then:

K = q’(TCOIJ(f) (liu), “eny Ai(n)’ j-/3'))
iff <K, Up D Qxny 10(mogdf) Ay - s iy Xt 1))
lff <K, U0>b=Qxl "'an‘-*—l(P(f(xla"'sxn’xn+1))

We reduce the right hand side of (10) to the same form:
KE O(op o1 () (Aiays - s Aigp A57))

iff (K, Ui(n)> = anfp(no, i) © To () (Aiu), cees /li(n— 1) X li(n))
iff (K, UppEQ0xy ... 0%,0(mo1(f) (X1, - Xns A0))

lff <K, U0>l= Qxl e anan-l— lq)(f(xla vens Xy xn+ 1)) s
because

K '= (p(n01(f) (xla coes X )‘0) lff <K9 U0> F an+ l(p(f(xla cees Xy Xy 1)) ’
for x4,...,x, <. QED (10)
By (10), the assignment
nOB(f) (ii(l)a R li(n)’ /1/1') = Tog © To1(f) (ﬂ'i(l)a ceey li(n)’ )“13')

defines a X ,-elementary embedding from K into K. By the remarks preceding (10),
this embedding is onto. Hence:

(11) K=K, and moy=mgsomo;.
Set Xp:= Xy, Qp:= 0, and continue the construction.
(12 If ve X, then moh(a(v)) =0o(v).
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Proof. mog(a(v)=mop(mo1(6(M)) =mop(0(v)) =0(v). QED (12)
Lim(f), and f<w,: Set
X:= X;.

i<pg
If card(X)<wy, set Xz:=0, Qp:={X}, and finish the construction by setting
BZ):=p.

Now assume that card(X) = w,. We will show that in this case (K, U;>,m; iVi<i<p
has a limit <K, U;).

Set C:= {xeK|n,(x)=x, for all i< p}.

(13) 6"XCC, ACC, and C<KK.

Proof. Obvious. QED (13)

For i<p set C;:= K[{]j<i}uC]. Let #,: K~ C, K, transitive.

(14) K=K, for i<§.

Proof. Define 7}: K —,K; by: nj:= 7' ogo(d%)"!. Then K—ieﬁiﬁ—»elz, and the
result follows from (3). QED (14)

For i<j<p define &;:=f; 1o #: K—,K.

(15) For ae P(A))nK, 7y,(a)=7Ro(a)N ;.

Proof. a=f(a)NAy since #oldg=id. myla)=ny(Ro(a)nAg)=To(@)N4; since
#ty(a)e C, and ny; [C=id. QED (15)

(16)  Fori<p, LEC;

Proof. Let v<2y, v=mo{f) (Airy --» i) €K, f: 45K, (1) <... <i(n)<i. We can
assume that f: 25— 1,. By (15), no(f)=7(f) 4} So

v=76(f) (Aiay -+ ii(n)) eC. QED (16)
a7 xeComyx)=x, for i<j<k<$B.

Proof. x is definable in K from some £ € C and Ay, ..., Ay i(1) < ... <i(n) < f. Now
Ty maps X, Ayq), ..., A identically. QED (17)

(18) Cinly=2, for i<j<p.

Proof. 2 by (16). C: Assume ye C;nA;and y Z 4, By (17), m;(y) =, but m;(y) = (/)
=4;. Contradiction. QED (18)

(19) Ffd)=2;, for i<j<p.
Proof. 7iif{A)=7] "o fi(A;)=otp(C;n7(4;)) Z otp(C;n 4, since
Rl A) = RN Z mifA)=4;.
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Now suppose that 7;{4;) > 4;, hence otp(C;n7{4;)) > otp(C;n4;). There is
i1y -+ > Ai) ECjs
such that teC, i(1)<... <i(n)<j, and 4; S A1y, - - -» Aigmy) < T 4)-
KE3E,, .., E<hj 45HEy, ., E)<T(A).

Applying n;; '
K|=3£1’ ey 6n<li . j‘té t(él: ERRE) én)<ﬁi(li)'

Such a #¢,,...,&,) would be in C, by (16), but, again by (16), C;n7{1,)=4,
Contradiction. QED (19)

(20) If ae P(A,)nK then m;{a)=7;{(a).

Proof. a=#fa)nk. So ma)=mnf @nA)=Fa)nl;=(F; " 7fa)n4; [by
(16)] =7;{a)n;=7;{a), by (19). QED (20)

We compare the systems (m;;> and {#;;>: Recursively, define functions ¢;: K—>K
by: 6o:=id [ K;

Tia 1M () (A) 1= Ty () (A, for feK, f:1A-K;
o{my(x)): = fy(x), for xe K, i<, where lis a limit ordinal < f. We verify inductively:
1) Each o, is well-defined and is the identity on K.
The claim is trivial for i=0.
Let i=j+1, and assume (21) holds for j.

(22) Let ¢ be a formula, 7(f)(4),...7;(f)(A)eK, and
fis--» [ueK. Then

K E (P(”ji(f1) (/11')> ooy nji(fn) (/11'))
iff K= (p(ﬁji(fl) (llj), -e ﬁji(f;l) (/1,'))~
Proof. Kk (P(”ji(f1) (A‘j)a ceey nji(fn) (A’j))
iff 4;e ”ji({v <ZAjlo(fi(v), ..., £}
iff et ({v<Aje(fi(v),... LD}, by (20),
iff K o@f)(4), ... % f)(4;). QED (22)

So o, is well-defined and elementary. To conclude the case i=j+1, it suffices to
show:

(23) g, is onto.
Proof. Let xe K. x=7; '« fi{x)=7; '(t(4;)), for some te C;. So
x=(&'O) & ) =@ 1) (4)
=& 'R B (%), for some teK, since C;=range(%)),
=78} (4)=0(n;{t) (1)) erange(s;). QED (23)



50 ’ P. Koepke

Finally assume Lim(i), and that (21) holds for j<i. <{m;>;<; is the limit of
Tpdj<k<s and {f;);.; is the limit of (%4> ;<x<; By inductive hypothesis, the
systems {7;;>;<i<; and {fz);<x<; are equal. Hence n; =1 for j<i.

So o; is well-defined and is the identity on K, and we have verified:
24 =7, for iZj<pB.

(25) The system <K, {m;>);< i<t has a well-founded direct limit
(K, (M) i<p and there is a map #: K-,K.

Proof. Let (K, <n1ﬂ>> be a direct limit of (K {m;;»>, which is supposed to be
transitive if it is well-founded. Define #:K—,K by #i(m;4(x)):=#(x). Since

7 —n]on j="R;om; for iSj<f, # is well-defined and elementary. Hence K is
transitive. QED (25)

26) R=K.
Proof. K25, R 25, K. Use (3). QED (26)
Set  Ug:=J{mop(xnUp)lxeK,s}. (K, Upd,mypdicy is the limit of
KK, Up,n; Tij)i<j<p WENOW have to check whether there are enough fixed points
for my, to keep the construction going.

Set Xj:={ve X|c**(o(v))=0(v)}.
(27) If ve X, then moy(a(v))=o(v).

Proof. By the proof of (25), there is 7 such that 7 o oy =7,. In the proof of (14) we
defined ny: K—,K by

7I2)=7T(;100'ZO(O'X)_1=~_1 XZ

figloa
0¥ =fyomy=fomygomp. S0 if ve X4, a(v)is a fixed point of ¢*Z, and therefore o(v)
is a fixed point of my;. QED (27)

We distinguish two cases:

If card(Xp=w,, set Qp:={X\X,}, and continue the
construction.

If card (X 5) <y, set Qg : = {X\ X, X}, and finish the construc-
tion by setting f(Z):= .

In either case we note:
(28) If Ye Q, has cardinality w,, then Y=X\Xj, and for
ve Y:d%(v)>at(v).

Proof. *(v)=a"*(a*(v)), by definition of *7. 6%(v) < 6**(0%(v)), since v ¢ X ;. Hence
o (v)>d*(v)2 a"(v), since Y=X\X,CX. QED (28)

Finally, we consider the case:

B=w,: Set f(Z):=w,, X;:=0, Qp:=0. Then the iterate (K, U,) exists for all
i<m,, and using the ideas of [3, Lemma 8.6], we see

(29) If B(Z)=w,, then <K, U, is iterable.
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This concludes the construction of our system. We note the following properties

(30) If B(Z)<w,, then |J{Q4B<p(Z)} is a partition of Z into
countably many subsets.

Proof. Obvious from the construction. QED (30)

(31N If Yel {Q4lB < B(Z)} has cardinality w,, then for
ve Y:d%(v)> o' (v).

Proof. By (9) and (28). QED (31)

The above construction was dependent on the cute set Z, and since we shall have to
vary Z, we now write n5;, U7, 1Z,0%, ... instead of m;;, U, 4,,Q,, ...

(32) There is a cute set X CZ such that f(X)=o,.

Proof. Assume that f(X)<w, for all uncountable X CZ. We build a tree T of
subsets of Z. T has height w. T= U T,, where T, denotes the n-th level of T.

Set Ty:={Z}. So Z is the root of T. If Ye T, has cardinality <w,, the unique
successor of Y at level T,,, is Y again. If Ye T, has cardinality w,, then the
successors of Y at level T,,, are all the elements of (J{Q}IB<p(Y)). Since
B(Y)< w,, the immediate successors of Y at level T, ., partition Y into countably
many pieces. Every level T, yields a partition of Z into pairwise disjoint sets:
Z=yT,.

The ordering of T coincides with reverse inclusion. T has countably many
nodes. So we can pick ve Z, so that for all n < w, v is a member of an uncountable
element of T,. Sayve Y, € T,, card(Y,) =w, (n<w). Then Y,2Y; 2 Y,2...,and using
(31) we get:

a¥°o(v)> a1 (v)> a2 (v)> ...

Contradiction. QED (32)
Because Z was an arbitrary cute set (32) actually proves:

(33) For every uncountable YC Z there exists an uncountable XY
such that f(X)=w;.

We conclude the proof of Theorem 1 according to two cases:

Case 1. There exists an uncountable X £ Z such that f(X)=w, and {if|i<w,} is
cofinal in K= o?(k).

Let (KK¥,UF>, i< jcon With iteration points A¥ be the iteration of (K, U3>.
Then 2% =x.

(34) K¥ =k is singular.

Proof. By (1), K=& is singular. n§,, : K—, K%

X ,and by (3), KX 2K. Hence K =k
is singular. QED (34)

w1 =

But this ylelds a contradiction since (KX ,UX =UZ is a measure on &, implying
that K} |=r is regular. This finishes the proof of Theorem 1 in Case 1.
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Case 2. If XCZ is cute and B(X)=w,, then {if|i<w,} is bounded below %.

Let X € Z be uncountable with f(X)=w,. Let ((KF, UF), 1>, < jcon With iteration
points A¥ be the iteration of (K, UX>.

We want to associate with X a mouse M* at A% , which is not an element of K.
Set N*:=J,[UX ], where y is maximal such that J,[UX 1nP(A% )CKZ . y exists
because otherwise L[U} ] would be an inner model with a measurable cardinal
contradicting our initial assumption.

35) y2AX 41,

Proof. Set A:=2%, K:=KZ_. Then J,, [U% JCKZX
amenable. QED (35)

We distinguish two cases:

Case I. P(AX )nN*CK.
Then set M*:= N*, and say that M¥ is of type I.

Case I1. P(AX )nN*¢ K. ~
Then set M*:=J,,,[UX ], where n is maximal such that P(1} )nJ,[UX 1< K.
We say that this M* is of type I1.

because (HX.,UZX > is

(o384

(36) M¥* is a mouse at X <k.

Proof. N*|=U%¥ is a measure at A} , and U is countably complete. M*C N* and
OnnM*> 3% . So M¥=U¥ is a measure at A% . If M* is of typel, X (M¥)
NP(A% ) $M*, and so some projectum of M* drops to a point <A¥ .

If M* is of type I, then some projectum of J,[U% 1,5 as in the definition of M%,
drops to an ordinal <% . But then the first projectum g},x of M*is <iX . So in
both cases, M* is a mouse. QED (36)

37 M¥¢K.

Proof. Because M* contains or allows to define over it a subset of AX which is not
in K. QED (37)

For X as above set A*:= 1% . We can find such ¥ cofinally in %:

(38) Let £ <. Then there exists an uncountable X< Z such that
B(X)=w, and ¢ <I* <Kk

Proof. In K, let f be the < g-least function such that f': cof(ic)— 7% coﬁnally Choose i
such that f(i)>¢, and let
= {ve Z|e*v)>f(i)}.

By (33) choose an uncountable X £ Y such that f(X)=w,. For ve X,
o Ho¥(v) =) > f()= "4 f10)),

since i is a constant of K; hence ¢*(v)> f(i).
So AX =X (min(X))> (i), and ¥ > 2X> f(i)>¢. QED (38)

(39) Let M*, MY be of type I and 2X¥ <A¥. Then M* > M¥, where <
denotes the canonical well-ordering of mice [see the proof of

@]
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Proof. Assume MX <MY instead. There are mouse-iterates M*, M* of M*, MY
respectively such that M* e MY. Over M* we can define a subset ¢ C A¥ which codes
MX.ce MY, and so ce MY. Then c e K and since we can decode ¢ in K, M* € K. This
contradicts (37). QED (39)

(40) Let M*, MY be of type Il and A¥ <A¥. Then M¥= M".

Proof. Assume M* < MY instead; let M*, M" be mouse-iterates of M*, MY such that
M*eM".Let M"=J,,,[U]and M*=J,, ,[U]. M* contains a subset c< A* such
that c¢ K. ce M*CJ,[U]. The iteration map from M* to M* maps c identically
(since A¥ > 1¥), and maps # to 7. Then ce J,[U]. By the definition of type II mice,
ce K. Contradiction. QED (40)

Now by (38), we choose uncountable X;CZ, for i <w,, such that:

(41) BX)=w,;

42) i<j<w—A*<i¥i<i;
and

(43) {A¥i<w,} is cofinal in k.

We can further assume that the mice M*! are all of type I or all of type IL By (39) or
(40) this implies:

(44) i<j<w,-o>M¥2z2M*,

Since the ordering £ of mice is well-founded, we can assume that
(45) Mx"~MXf, for i,j<w, (writt N~ N’ for NN’ and N'<N).
Then, using [3, 10.16]:

(46) MZX: is a mouse-iterate of M*°, for i< ®,.

Set M := MXe_ )Xtis the measurable of M¥:, and therefore every A¥i is an iteration
point of M. Since the A** are cofinal in k:

47 K is an iteration point of M in the mouse-iteration of M.
(48) K=k is singular, by (1).

Let N € K be a mouse such that N |=« is singular, and such that the measurable of
N is > k. Let M, N be comparable mouse-iterates of M, N respectively. If NC M,
then M |= & is singular, although & is an iteration point of M. So M € N, and there is
ce P(©)nN, which codes M. ce NeK, and, decoding ¢ in K, MeK. But this
contradicts (37).

This concludes the proof of Theorem 1, as far as the existence of an inner model
with one measurable cardinal is concerned. QED

3. How to Get @, Measurable Cardinals

" To derive the full result, i.e., the existence of w, measurable cardinals in some inner
model under the assumptions of Theorem 1, one uses the family of short core
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models as presented in [6]. The argument of Sect. 2 can be adapted to these larger
core models and we indicate some of the changes necessary. The fine structure
arguments used to prove facts (39) and (40) above have to be replaced by fine
structure results developed in [5]. This means that we have to be very vague.

Again our proof proceeds by contradiction. Assume x is minimal with
Fr,(x,w,;), and cof(x)=w,, and assume there is no inner model with w,
measurable cardinals. By [6,2.14], this implies —10"". So the fundamental
properties of short core models hold. Let K[U_,,] be the canonical core model
[6,3.15]. By the covering theorem [6,3.19],

1) it = (e e,

dom(U,,,)is countable, because otherwise K[ U ,,] would be an inner model of
uncountably many measurable cardinals. So for any Prikry system C for K[U,,],
the collection Crx of “Prikry points” <k in C is bounded below  (see [6, 3.22]).
By the covering theorem with Prikry systems [6,3.23],

1" K[U_.JE« is singular.
So we have established the analogue of (1) of Sect. 2. Set F:=U_,, [k, and
8 := max(cof¥tVean)(x), sup dom(F))<x.

Let us denote by K, - the structure {(H,.)*"L F,{a|a <6, ..., where F and the «
are constants, and ... stands for a countable collection of Skolem functions for the
structure K, . without constants. For short core models over F property (3) holds
in the form:

(3" Let S, T be transitive models of ZFC™ +V=K[F], where
FeS, T Let 0:8-,T, 0, S, such that ¢[(sup dom(F)+1)=id.
Then SCT.

With this, the arguments of Sect. 2 go through unchanged up to the consideration
of

Case 2. If XCZ is cute, and f(X)=w,, then {Af|i<w,} is bounded below .

Let X € Z be uncountable with f(X)=w,. Let C(KF, UF), 15D, < ;e 0n With iteration
points ¥ be the iteration of <K, U¥ ». We determine a mouse M* over F which is
not an element of K: Set 2:=1X , K:=KX . Let F’ be the predicate with dom(F)
=dom(F)u{A} such that F'{dom(F)=F and F)=U% .

By the definition of U,,, F’ is not strong and there exists an iterable premouse
P=J,[G,F] over F' such that P="F" is not a sequence of measures”. We may
assume that the predicate G is countably complete. Set N:=J,[ G, F'] where y <a
is maximal such that J,[G, F']nP(A)< K. We distinguish two cases:

Case I. P(Q))nN LK.
Then set M := N, and say that M is of type I.

Casell. P(A)nN {K.
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Then set M :=J, . ,[G, F'], where 5 is maximal such that P(A)nJ,[G, F] CKk,
and say that M is of type I1.

(36" M can be viewed as a mouse over F, and then 4 =min meas(M).

This is the place where finestructure comes into play, and we become very sketchy.
Basically, things behave as in Sect. 2 after some rather difficult definability and
iterability questions are dealt with.

Now let M be the A-core of M, which is defined like a core in the context of the
ordinary core model K. We can reprove (37) and (38). The mice M*, MY can be
well-ordered via fine-structure preserving iterations like the core mice of K; we
carry over (39) and (40) to the present situation. With this we can imitate the rest of
the argument. Notice that in establishing the analogue of (46) one uses that M* is a
A% -core.

So, finally, we get a contradiction, and the assumption that no inner model
contains @, measurable cardinals is false. QED
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