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Multistage stochastic programs
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Let £ = {&}7, be an R%valued discrete-time stochastic process
defined on some probability space (€, F, IP) and with & deter- ~ [merse ]
ministic. The stochastic decision x; at period t is assumed to

be measurable with respect to the o-field F(§) == o(&, ..., &) S

(nonanticipativity). —_—

Multistage stochastic program: e
T Tt € Xy,

min{ F Z (b1(&), z4)]| ¢ is F(§) — measurable,t = 1,...,T e
t=1

At’()xt + At,l(ft)xt—l — ht(gt)7t - 27 T ’T Go Back I

where X; are nonempty and polyhedral sets, A; o are fixed recourse

matrices and by(-), h¢(-) and A, (-) are affine functions depending [ fse ]
on &, where £ varies in a polyhedral subset = of IRT.
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If the process {&:},_, has a finite number of scenarios, they exhibit w |

a scenario tree structure.



To have the multistage stochastic program well defined, we assume
r € Ly(Q, F,IP; IR™) and & € L.(Q, F, IP; R"), where r > 1
and

— , if costs are random
= r , if only right-hand sides are random

oo , if all technology matrices are random and r = T.

The measurability or nonanticipativity constraint may be expressed
via the subspace

No(&):={x € L,(Q,F,IP;R") : xy = FElxy|R(§)],t=1,...,T}

using the conditional expectations IF| - | F:(£)].
For T' = 2 we have N,,(§) = R™ x L.(Q), F, P; IR™).

Then the multistage stochastic program is of the form

min{jE[ Z<bt(ft)> )]

t=1

Apoxy + A1 (&) zimr = hi(&),t =2, ...,

— infinite-dimensional optimization problem

v € X, 1y = Elw Fi(6)),t =1,....,T, }
T
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Data process approximation by scenario trees
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Solving the multistage stochastic program requires to approximate
the process {& 11, by a process having the form of a scenario tree | v |
based on a finite set NV C IN of nodes.
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Scenario tree with T'=5, N = 22 and 11 leaves

n = 1 root node, n_ unique predecessor of node n, path(n) =
{1,...,n_,n}, t(n):=|path(n)|, Ni(n) set of successors to n, Cose |
Nr ={n e N : N,(n) = (0} set of leaves, path(n), n € N,

scenario with (given) probability 7", 7" := ZV€N+(n) 7" probability |
of node n, " realization of ).
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Tree representation of the optimization model

mm{ZW (b(n)(£"), @ >

neN

" € Xym),n €N, Alox = hy(€Y)

How to solve the optimization model ?
- Standard software (e.g., CPLEX)

- Decomposition methods for (very) large scale models
(Ruszczynski/Shapiro (Eds.): Stochastic Programming, Handbook, 2003)

Questions:

e Under which conditions and in which sense do multistage mod-
els behave stable with respect to perturbations of £ ?

e Can such stability results be used to generate (multivariate)
scenario trees ?
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Dynamic programming
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Theorem: (Evstigneev 76, Rockafellar/Wets 76)
Under weak assumptions the multistage stochastic program is equiv- _ Terue |
alent to the (first-stage) convex minimization problem
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min{/Ef(xl,f)P(dﬁ) T € Xl}) | » ]

where f is an integrand on IR™' x = given by
RN
f@1,€):=(b1(&1), 21) + Po(w1,€7),
@t(ﬂil, ceey L1, ft> izinf{@t(&), $t>+IE[q>t+1(CU1, ey Lty ftﬂ)\ft]ﬁ e
Ty € Xy, Avoxe + A1 (&) Te—1 = he(&) } Gosuck |

fort=2.....T, where ® Ty, ...z, LD =0,

3 3 T—l—l( 1, 3 T?g ) - I
—The integrand f depeln.ds o-n t-he Probability measure P :fmd, o |
thus, also on the probability distribution P = IP o &1 of £ in a

nonlinear way ! Hence, earlier approaches to stability fail ! aie |



Quantitative Stability

Let us introduce some notations. Let /' denote the objective func-
tion defined on L,.(Q, F, IP;IR°) x L.(), F,IP;IR™) — IR by
F(& @) == B,y (bi(&), )], let
Xi(xi—1;&) = {xr € Xy|Aroxr + Ara (&)1 = (&)}
denote the ¢-th feasibility set for every t = 2,...,T and
X() ={z € L,(%, F,IP; R")|x1 € X1,z € Xi(w1-1;6) }

the set of feasible elements with input &.
Then the multistage stochastic program may be rewritten as

min{F(€,2) = & € X(§) NNH(E)}.
Let v(&) denote its optimal value and, for any o > 0,
lo(F(&;-) = {z € X(§) NN(E) : F(§,z) <v(f) +a}
S = b(F(,-))

denote the a-level set and the solution set of the stochastic pro-
gram with input &.
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The following conditions are imposed:
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(A1) ¢ € L), F, IP; IR’) for some r > 1.
Title Page |

(A2) There exists a 9 > 0 such that for any £e L.(Q), F, IP; IR%)
with ||€ =&l < 0, any t = 2,...,T and any z; € X}, 2, €
Xo(xr—1;&), T =2,...,t — 1, the set X(z;_1;&) is nonempty -1

(relatively complete recourse locally around &).

RS
(A3) The optimal values v() are finite for all € € L,(Q, F, IP; IR?)
with ||€ — €|, < & and the objective function F is level-bounded ~— [Peiets]
locally uniformly at &, i.e., for some v > 0 there exists a 0 > 0 and
a bounded subset B of L,/(Q, F, IP; IR™) such that I,(F(£, ")) is ——
nonempty and contained in B for all £ € L,.(Q, F, IP; IR®) with
- 1 cose |
Norm in L+ [|€]l = (3 E[J&)?
=1 |



Theorem: (Heitsch/Romisch /Strugarek, SIAM J. Opt. 2006)
Let (A1), (A2) and (A3) be satisfied, 7 > 1 and X; be bounded.

Then there exist positive constants L and ¢ such that

[0(€) — v(€)] < L([I€ = €l + Di(€, €))
holds for all ¢ € L,(Q2, F, IP; IR®) with ||€ — £]|, < 0.

Assume that technology matrices are non-random, and the solution
x* of the original problem is unique
If (€™) is a sequence in X, L.(Q, F,(£), IP; IR®) such that

| —¢ll, and D™, ¢)

converge to 0 and if (™) is a sequence of solutions of the ap-
proximate problems, then the sequence (z(")) converges to z* with
respect to the weak topology in L,.

Here, Di(€, €) denotes the filtration distance of & and € defined by
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Remark:

Simple examples show that the filtration distance is indispensable
for the stability result to hold.

Note that Dy is not a metric on L, (S, F, IP; IR*) (although non-
negative and symmetric).

The filtration distance of ¢ and & with [|€ — £||, < ¢ may be

estimated by

T-1
Di(6,€) < sup > Bl Fi(€)] - Elzl ()l
= T-1 B
<0 > Bz F(€)] — Blzd Fu€)lle,
<t —g

where § > 0 and B are the constant and L,.-bounded set appearing
in (A2) and (A3), respectively, and the constant C' > 0 is chosen
such ||z]|,» < C for all x € B.

The final term may be interpreted as a metric distance of filtrations
or information distance.
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Generation of scenario trees

(i) In most practical situations scenarios £’ with known probabili-
ties p;, 2 = 1,..., N, can be generated, e.g., simulation scenar- [« | » ]
ios from (parametric or nonparametric) statistical models of £
or (nearly) optimal quantizations of the probability distribution R

of &.
Page 11 of 29 I
(ii) Construction of a scenario tree out of the scenarios &' with
probabilities p;, 1 =1,..., N,. Gopack |
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Approaches for (ii):

(1) Bound-based approximation methods,
(Frauendorfer 96, Kuhn 05, Edirisinghe 99, Casey/Sen 05).

(2) Monte Carlo-based schemes (inside or outside decomposition
methods) (e.g. Shapiro 03, 06, Higle/Rayco/Sen 01, Chiralaksanakul/Morton 04).

(3) the use of Quasi Monte Carlo integration quadratures
(Pennanen 05, 06).

(4) EVPI-based sampling schemes (inside decomposition schemes)

(Corvera Poire 95, Dempster 04).
(5) Moment-matching principle (Hgyland/Wallace 01, Hgyland/Kaut/Wallace 03).

(6) (Nearly) best approximations based on probability metrics
(Pflug 01, Hochreiter/Pflug 02, Mirkov/Pflug 06; Growe-Kuska/Heitsch/Rémisch 01, 03,
Heitsch/Romisch 05).

Survey: Dupatovd/Consigli/Wallace 00
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Constructing scenario trees

Let & be the original stochastic process on some probability space
(Q, F, IP) with parameter set {1,..., T} and state space IR". We
aim at generating a scenario tree &, such that

I€ = &ull: and  Di(€, &)

and, thus,
(&) — v(&w)]

are small.

To determine such a scenario tree, we start with a discrete approxi-
mation & consisting of scenarios &' = (&1, . .., £%) with probabilities
pi,t=1,...,N. & is a fan of individual scenarios.

Home Page |
Title Page I
Contents I

KT
N
Page 13 of 29 |

Go Back I

Full Screen

N
Close I
e

Quit



The fan & is assumed to be adapted to the filtration (F;(€))L,
and

1€ = &llr < Eappr-

Algorithms are developed that generate a scenario tree &;, by delet-
ing and bundling scenarios of & (that are similar at ¢) such that it
is also adapted to the filtration (F;(£)).; and satisfies

(1) 1€ — Eullr < &
Ee |
2 inf — Exi| Fi (&)l < e
(2) x;%QZQWm (24| Fe ()] ] < et
Since it holds
5]
Di(€, &) < €appr + 1?& ) Z |z — x| F (&)
SRS

if & is sufficiently close to &, we obtain in case g, + €, < 0 that

(&) — v(éw)| < L(2€appr + & + £).
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(1) Forward tree generation

Let scenarios &' with probabilities p;, © = 1,..., N, fixed root
&l € IR? r > 1, and tolerances ¢,, &;, t = 2,...,T, be given such

T
that > e < e,
t=2

Step 1: Set &' :=¢& and C; = {I ={1,...,N}}.

Step t: LetC, 1 = {C/} {,... Kt '} Determine disjoint index
sets IF and JJ of remaining and deleted scenarios such that ¥ U
Ji = C’f 1» @ mapping oy : [ — [

Oé(])z izlf{;(j)aje‘]tk7k:17"'7Kt—17
' jJ , otherwise,

where i¥(j) € IF such that

k<]) c argmm]ft 1,0 ét_l’j‘t,
ZGI
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a stochastic process &

£t { FO <t

Z' .
&, otherwise,

such that
1€ — &7 e < e
Set I, ;= U, ' TF and G o= {a; (i) i e IF, k=1,... K1}

Step T+1: Let Cr = {C7, .. .,CfT}. Construct a stochastic

process &, having Ky scenarios &, such that &, := f‘t(i) with
probabilities 7% = > p;ifi e Ck k=1,..., Ky, t=2,...,T.
jeck
T
Proposition: ||& — &l < D e < ey
t=2
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[llustration of forward tree construction
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(2) Bounding approximate filtration distances

Aim: A& &) = xéfqlfgf Z |z — | (&)l < e

Two possibilities:

(i) Estimates in terms of some solutions with input &, which would
require to solve a two-stage model.

(i) Estimates in terms of the input &.

Proposition:
Let (A2) and (A3) be satisfied, X; be bounded, 1 < ' < ¢
and & is sufficiently close to £. Assume that F;(&;) is identical for

t=2,...,T. Then there exists a constant L>0 such that
At <L(Y Y mile — €l )
1€19 jGIQJ
Condition: S pilel — € <ef
1€19 jE]QJ'

<Start Animation>
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Numerical experience

We consider the electricity portfolio management of a municipal
power company. Data was available on the electrical load demand
and on electricity prices at the market place EEX.

A multivariate statistical model is developed for the yearly demand-
price process & that allowed to generate yearly demand-price sce-
narios &, with probabilities p; = % 1=1,..., N.

These scenarios are assumed to form the process &. Branching in
& was allowed at most monthly. The tolerances ¢; at branching
points were chosen such that

€ 1t
= “+gz—=), t=2....T
gt T[ +Q(2 T)}7 9 9 9

where the parameter ¢ € [0, 1] affects the branching structure of
the constructed trees. For the test runs we used g = 0.6.

The test runs were performed on a PC with a 3 GHz Intel Pentium CPU and 1 GByte main memory.
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Yearly demand-price scenario trees with relative tolerance
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Yearly demand-price scenario trees with relative tolerance
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Erelr | Erelf | Scenarios | Nodes | Stages | Time
(sec)

0.10 | 0.20 08 774988 6 25.01
0.30 99 774424 6 25.05

0.15 | 0.25 94 719714 12 24 .97
0.35 94 723495 10 24.99

0.20 | 0.30 90 670321 9 24.94
0.40 90 670478 10 24.94

0.25 | 0.35 85 619296 9 24.95
0.45 87 620340 10 24.93

0.30 | 0.40 80 547 824 11 24.86
0.50 83 567 250 11 2491

0.35 | 0.45 72 482163 11 24.94
0.55 76 498732 11 24.90

0.40 | 0.50 67 426 794 8 24.92
0.60 71 444060 11 24.90

0.45 | 0.55 60 368 380 7 24.97
0.65 65 383556 11 24.87

0.50 | 0.60 50 309225 6 24.99
0.70 60 319380 11 24.88

0.55 | 0.65 44 247303 6 25.00
0.75 51 265336 10 2491

0.60 | 0.70 37 188263 6 25.17
0.80 45 203321 9 24.98

Numerical resu

H. Heitsch, W. Romisch: Scenario tree modelling for multistage stochastic programs, Preprint 296,

ts for yearly demand-price scenario trees

DFG Research Center Matheon " Mathematics for key technologies”, 2005.
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