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Deformations Depend on the Shape
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Problem Setting

O cC R?

. Fixed Boundary
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Linear Elasticity

e Elastic body O Cc R?
@ The boundary 9O consists of two disjoint parts:

00 =Ty UT)p, FDEA[D

o Internal forces f

o External forces g

~ displacements u ~~ strain characterized by linearized strain tensor

1 1
e(u) = 5(Vu+ vu'), e; = 5 (i + i)
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Linear Elasticity

Elastic material behaves according to Hooke’s law

A€ = 2u€ + A(tr€)1d, for any symmetric matrix &
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Linear Elasticity

Elastic material behaves according to Hooke’s law

A€ = 2u€ + A(tr€)1d, for any symmetric matrix &

O varying ~» working
domain D,

contains all admissible
shapes,

f € XD,

g€ H'(D)!
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Linear Elasticity

Elastic material behaves according to Hooke’s law

A€ = 2u€ + A(tr€)1d, for any symmetric matrix &

O varying ~» working

domain D,

contains all admissible PDE

shapes, —div(de(u)) =f in0O,

f € LZI(D)dé u = 0 on FD»
H (D

g € H (D) Ae(u))n =g onTy
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Composite Finite Elements

Standard FE:
@ mesh has to resolve the structure of the domain

@ therefore, min. dim. of FE space is directly linked to number and size of
geometric details of the domain

More efficient: Composite FE (Developed by S. Sauter)
o allow coarse-level discretizations of PDEs on complicated domains

@ principle idea: the shape of FE functions is hierarchically adapted to behavior of
the solution ~~ discretization of problems with complicated structures with very
few unknowns
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Examples for Objective Functions

o Compliance

J((’)):/Ofwdx—l—/mg-uds

@ Least square error compared to target displacement

5(0) = (/O|u—uo|2<bc)é
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Examples for Objective Functions

o Compliance

J((’)):/Ofwdx—l—/mg-uds

@ Least square error compared to target displacement

5(0) = (/O|u—uo|2<bc)é

Optimization Problem

existence of optimal shapes requires
smoothness, geometrical or topological

Olgbftad J(O) + ¢P(O) constraints
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e Two-Stage Stochastic Programming Formulation
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QOutline

e Two-Stage Stochastic Programming Formulation
@ Two-Stage Stochastic Linear Programming Formulation

Harald Held (Univer S Shape Optimization Under Uncertainty



Two-Stage Stochastic Linear Program

Information Constraint

decide x — observe z(w) — decide y = y(x, z(w))

min{c’x + min{g"y: Wy = z(w) — Tx, y € ¥} : x € X}
x y

min{c’x + G(x,w) tx€X}
X

— looking for a minimal member in family of random variables
{"x+ G(x,w) : x € X}
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Risk-Neutral Setting

In this case, the random variables are ranked by their expectations

~ min{E,, [¢"x + G(x,w)]

cxeX}
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e Two-Stage Stochastic Programming Formulation

@ Random Shape Optimization Problem
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General Objective Function

J(C’),u(O,w))z/j(u)dx—l—E ds, O € Uy, > 0
O o0

o u = u(O,w) is the solution of the PDE

o assume j(.) is linear or quadratic and independent of w
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The Two Stages

o First stage Non-anticipative decision on O has to be taken
@ The random forces f(w), g(w) are observed

@ Second Stage The variational formulation of elasticity, given O and w, takes the
role of the second-stage problem

Information constraint here
decide O — observe f(w), g(w) — decide u = u(O, w) J
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Variational Formulation of Elasticity

u also coincides with the minimizing element of

inf{E(O, p;w): p € H'(0), p =00nTp},

1
BO.piw) = [ SAelo) () ~f() - pdi— [ gw)-pds
O Ty
Notation

A--B=tu(A"B) = ZAUBU
iyj=1
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Two-Stage Shape Optimization Problem

wfef o Lo

u(0O,w) = argmin{E(O, p;w) : p € HI(I‘D)”I},O € Uad}
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Direct Comparison with Linear Case

Linear 2-Stage Problem

min{ F(x) + E[G(¥(x,w)] : x € X, }
y(x,w) € argmin{G(y) : y € Y(x,w)}

2-Stage Shape Optimization Program

min{ f(O) + E[g(0,a(0,w))] : O € U, }
#(0,w) € argmin{e(O,u,w) : u € H'}
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Structure of Random Forces

Now, the volume forces f and surface loads g are random with special structure:

~f=f(w), g = gw),

e finitely many forces fi, . ..,fx, € L*(O)¢ and g, ..., gk, € H' (0)?
e random coefficients #,(w),i = 1,...,K; and h¥(w),i = 1,..., K, such that

K, K
fw) =D MWl gw) =) h(w)e
i=1 i=1
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Structure of Random Forces

o Additional requirement:

K

> H(w) =1, th(w)z 1, Yw

i=1

@ finitely many scenarios w;,i = 1,...,S which occur with probabilities
mi=1,...,8
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Lagrangian Functional

Consider Euler’s equation as a constraint in the minimization problem and introduce
the adjoint state v to construct a Lagrangian functional:

L(O, ¢, ¢;w) = J(O,9) +dE(O, p,w; 1))

First Variation

d
dE(O, p,w; ) = d—EE(Q © + e w)

e=0
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Optimality Conditions

The stationarity of the Lagrangian gives the optimality conditions:

(0,L(0, ¢ 4% w), ¢) = 0.¥¢ € H'(O)",
(0pL(0, " % w), ¢) = 0¥g € H'(0)?

o first condition ~~ adjoint problem

@ second condition ~ elasticity PDE
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Adjoint Problem

The adjoint state p is the solution of the following problem:

—div(Ae(p)) = —j'(u) inO,
p=0 onI'p,
(Ae(p))n=0 onTy

— will be needed for the shape derivative
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Observations

@ optimality conditions allow exactly one feasible solution (@opt, Yopt)
o therefore, it’s the optimal solution

@ can be obtained by solving elasticity PDEs

@ j was assumed to be at most quadratic ~ j' is linear

@ consequently, optimality conditions are linear in u, p,f, g and ¢
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Re-written Problem Formulation

Notation

ult) p(:v) denote the solutions of the elasticity problem (P,,) and the adjoint

problem (P, , ), resp., with forces f,, and g,, p € {1,... K1 },v € {1,..., K>}

min{ £ [, ds+ 30, m [ j(@(O, wy)) dx :

(OFS Mada
WO, we) 1= Dy M (wi) S0y b (wiu),
k=1,...,8,

ult¥) solves (P,,.,),
V(M,V) S {17...,K1} X {1,...,K2}
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Solution

Linearity and minimizing the expected value = suffices to solve K; + K, PDEs,
which is independent of the number of scenarios S.
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© Shape Derivative and Level-Set Method
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Shape Derivative

Definition (Allaire et al)

The shape derivative of J(O) at O is defined as the Fréchet derivative in W' (R?)4
at 0 of the mapping © — J((Id + ©)(0)), i.e.

J((Id+ ©)(0)) =J(0) + (J'(0),8) + 0o(O)

with lime .o |0||(9®”)| = 0, where J'(O) is a continuous linear form on W' (R%)4,
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Form of Shape Derivative

The shape derivative is of the form

(7(0).0) -

with a function v = v(ii, py, n, H).

vO - nds,
o0
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Domain Represented by Level-Set Function

O is described by means of a level-set function ® in D:

o(x) =0 < xe00ND,
P(x) <0 & xe0,
d(x) >0 wxe(D\O)

s VO
@ normalnto O is Nl

@ mean curvature H is given by divn
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Shape Derivative in Level-Set Notation

@ only variations in normal direction are interesting

@ domain O is identified with level-set function ®

~

N 9
J(®),9) = —/ v——ds
(J'(®),9) oy V9
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© Numerical Results
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Test Setting

00 is divided into 3 parts:
@ ['p: the fixed Dirichlet boundary
o ['y: part of the Neumann boundary where the surface loads act on;
this is also fixed and does not move during the optimization process
@ I'y: all other parts of the boundary; this is the only part of O to be optimized
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Test Setting

objective function (compliance with f = 0):
1O, w) = / o(w) - uds + (Ry(O)
Ty

with regularization terms

R(O) = / ds (and volume preservation) ,
20

R(O) = / d
o
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Instance 1 - Initial Shape
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Instance 1 - Optimal shapes for gy and g;
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Instance 1 - Optimal shapes for %go + %gl and 2 scenarios

Harald Held (University

duisburg-Essen)

Shape Optimization Under Uncertainty

A2 N Ge




Instance 2 - Initial shape and optimal shape for g
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Instance 2 - Optimal shapes for %go + %gl and 2 scenarios
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Instance 3 - Initial shape
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Instance 3 - Optimal shapes for gy and g;




Instance 3 - Optimal shape 2 scenarios




Instance 4 - Initial and Optimal Shapes

Harald Held (University

duisburg-Essen)

Shape Optimization Under Uncertainty

A2 N Ge




Instance 5 - Optimal shape for gy and g; and 2 scenarios
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